Godssecret's Weblog


May 12, 2010, 10:21 am
Filed under: Uncategorized



Scientists predict break through on String theory, dark matter and the GOD particle or sabotage from the future !
May 12, 2010, 9:59 am
Filed under: Science

The boundaries of knowledge in physics look set to be broken soon with scientists around the globe locked in a multi-billion-dollar race to solve great mysteries. Their quest is to find the secrets of dark matter and the ‘God particle’ – a sub-atomic particle that is fundamental to understanding the nature of matter, but so elusive that, physicists quip, it can only be compared to divinity.

Physicists and cosmologists will tell you that there are elegant theories and messy ones. Almost all of them believe the universe conforms to an elegant one. A central goal of today’s physics, in fact, is to show that at its very beginning, the universe was ordered and unified. But this unity didn’t last for long. Just instants after the Big Bang, as the explosion cooled and its contents scattered, the cosmos’ forces and matter differentiated. The universe fell from a state of perfect grace into its current complexity, in a cosmic parallel to Adam and Eve.

Many great minds took giant steps toward bringing the universe’s lost unity out of hiding. In 1964, Peter Higgs, a shy scientist in Edinburgh, added his name to that list by coming up with an ingenious theory that gave scientists the tools to explain how two classes of particles, which now appear to be different, were once one and the same. His theory proposes the existence of a single particle responsible for imparting mass to all things — a speck so precious it has come to be known as the “God particle.” The scientific term for it is the Higgs boson.

Contemporary physicists tend to fall into one of two camps: the theorists, who posit ideas about the origins and workings of the universe; and experimentalists, who design telescopes and particle accelerators to test these theories, or provide new data from which novel theories can emerge. Most experimentalists believe that the theorists, due to a lack of new data in recent years, have reached a roadblock — the Standard Model, which is the closest thing the theorists have to an evidence-backed “theory of everything,” provides only an incomplete explanation of the universe. Until theorists get further data and evidence to move forward, the experimentalists believe, they end up simply making wild guesses about how the universe works.

To scientists in the early 20th century, for example, quantum mechanics may have seemed outrageous. “The concept that you could have a wave-particle duality — that an object could take on either wave-like properties or point-like properties, depending on how you observe it — takes a huge leap of imagination,” says Roberto Roser, a scientist at Fermilab. “Sometimes outlandish papers turn out to be the laws of physics.”

The first and most important order of business is to prove (or disprove) the existence of a single particle known as the Higgs boson — a speck so precious that it has come to be called the “God particle,” a reference to the theory that Higgs gives mass to all matter in the cosmos.

It works like this: Across the post–Big Bang universe, collections of Higgs bosons make up a pervasive Higgs field — which is theoretically where particles get mass. Moving particles through a Higgs field is like pulling a weightless pearl necklace through a jar of honey, except imagine that the honey is everywhere and the interaction is continuous. Some particles, such as photons, which are weightless particles of light, are able to cut through the sticky Higgs field without picking up mass. Other particles get bogged down, accumulating mass and becoming very heavy. Which is to say that even though the universe appears to be asymmetrical in this way, it actually is not — the Higgs field doesn’t destroy nature’s symmetry; it just hides it.

If scientists at CERN are able to locate the Higgs particle in the early years of this new century, it would shore up the basic scientific tenet that what exists at the very foundations of our universe is beauty and unity. It’s something to continue to strive for, at least.

But if it does exist, the Higgs would help plug a hole in the so-called Standard Model — the far-reaching set of equations that incorporates all that is known about the interaction of subatomic particles and is the closest thing physicists have to a testable “theory of everything.” But many theoreticians feel that even if the Higgs boson exists, the Standard Model is unsatisfactory; for instance, it is unable to explain the presence of gravity, or the existence of something called “dark matter,” which prevents spiral galaxies like our Milky Way from falling apart. Even the mighty Higgs cannot explain those mysteries — though through telescopes and observation, we know they exist.

The significance of the God particle is as old as time itself: scientists believe that at the moment of the Big Bang, when the universe was born, there existed a moment of incandescent beauty — of perfect symmetry — in which all things and all forces were in absolute agreement. The universe’s four forces — the weak force, strong force, electromagnetism and gravity — had yet to differentiate, and the tiny particles that carried those forces had yet to emerge as separate entities. As the explosion cooled and its contents scattered, complexity engulfed the universe, splitting its symmetry asunder — a cosmic parallel to Adam and Eve.

The goal of modern theoretical physics is to reveal the universe’s lost elegance. A major breakthrough in that effort came in 1964, when Peter Higgs, a shy British scientist in Edinburgh, introduced a theory that could explain how particles that carry two of the four forces — those that carry the electromagnetic force, and those that carry the weak force — came to have different masses as the universe cooled (in the moment after the Big Bang, of course, nothing had mass, existing instead in a sort of naked, ethereal beauty). Extrapolating from Higgs’ theory, scientists were able to explain how all particles get their mass — which would explain, in turn, how everything in the universe, from scientists at CERN to the grand Jura Mountains that surround them, comes to have weight.


The way to find the Higgs boson is to create an environment that mimics the moment post–Big Bang. The powerful LHC runs at up to 7 trillion electron volts (TeV) and sends particles through temperatures colder than deep space at velocities approaching the speed of light. (The second most powerful particle accelerator, at Fermilab in Illinois, runs at 1 TeV.) The added juice allows scientists to get closer to the high energy that existed after the Big Bang. And high energies are needed, because the Higgs is thought to be quite heavy. (In Einstein’s famous equation E=MC2, C represents the speed of light, which is constant; so in order to find high-mass particles, or M, you need high energies, E.) It’s possible, of course, that even at such high energies, the Higgs boson will not be found. It may not exist.

The ATLAS particle detector at the European Organization for Nuclear Research (CERN) outside Geneva is 150 ft. long, 82 ft. high, weighs 7,000 tons, and contains enough cable and wiring to wrap around Earth’s equator seven times. It’s a mammoth machine, designed for the delightful purpose of detecting particles so tiny, you can fit hundreds of billions of them into a beam narrower than a human hair.


ATLAS occupies just one small corner of the strange and wonderful world that is the Large Hadron Collider (LHC) — the circular, 14-mile-underground particle accelerator that promises scientists untold insights into the mysteries of the cosmos. More than 25 years in the planning, with a price tag of about $10 billion, the LHC officially — finally — began smashing protons together on March 30. The goal: to answer the most fundamental questions about how the universe works.

Physicists will collide electrons and their antimatter opposites, positrons, at energies of 500 billion electron volts. The scheme – which could be extended to 50 kilometres and a trillion electron volts – will hurl these particles at close to the speed of light. The resultant collision could unlock dark matter and dark energy, the invisible, enigmatic substances that together are thought to comprise 96 per cent of the mass of the universe.

Sometime on Nov. 3, the supercooled magnets in sector 81 of the Large Hadron Collider (LHC), outside Geneva, began to dangerously overheat. Scientists rushed to diagnose the problem, since the particle accelerator has to maintain a temperature colder than deep space in order to work. The culprit? “A bit of baguette,” says Mike Lamont of the control center of CERN, the European Organization for Nuclear Research, which built and maintains the LHC. Apparently, a passing bird may have dropped the chunk of bread on an electrical substation above the accelerator, causing a power cut. The baguette was removed, power to the cryogenic system was restored and within a few days the magnets returned to their supercool temperatures.

researchers at the Tevatron collider, at the famous Fermilab facility near Chicago in the U.S., believe they could be in with a chance. New calculations suggest that the upper limit for the Higgs is 153 GeV, which is within the Tevatron’s range.

Meanwhile, physicists at Stanford University in California said they have conducted an experiment that proves the viability of a low-cost collider technology called a plasma accelerator.

Instead of using a giant magnet and a huge tunnel to accelerate the particles, their accelerator uses a tunnel just three kilometres long to speed up a beam of electrons.

By passing the electrons through a cloud of ionised gas, or plasma, that is just one metre across, the team were able to double the particle’s energy – a massive booster effect, they report in the British journal Nature.

Only a tiny fraction of the electrons in the beam were accelerated this way, though, and the beam itself is not ‘concentrated’ enough to get a good yield of particle collisions.

According to Wormser, “Plasma accelerators are a promising technology and may be the solution for the future, but on a timescale of 20 to 25 years at least.”

The LHC, a 17-mile underground ring designed to smash atoms together at high energies, was created in part to find proof of a hypothetical subatomic particle called the Higgs boson. According to current theory, the Higgs is responsible for imparting mass to all things in the universe. But ever since the British physicist Peter Higgs first postulated the existence of the particle in 1964, attempts to capture the particle have failed, and often for unexpected, seemingly inexplicable reasons.

In 1993, the multibillion-dollar United States Superconducting Supercollider, which was designed to search for the Higgs, was abruptly canceled by Congress. In 2000, scientists at a previous CERN accelerator, LEP, said they were on the verge of discovering the particle when, again, funding dried up. And now there’s the LHC. Originally scheduled to start operating in 2006, it has been hit with a series of delays and setbacks, including a sudden explosion between two magnets nine days after the accelerator was first turned on, the arrest of one of its contributing physicists on suspicion of terrorist activity and, most recently, the aerial bread bombardment from a bird. (A CERN spokesman said power cuts such as the one caused by the errant baguette are common for a device that requires as much electricity as the nearby city of Geneva, and that physicists are confident they will begin circulating atoms by the end of the year)

While most scientists would write off the event as a freak accident, two esteemed physicists have formulated a theory that suggests an alternative explanation: perhaps a time-traveling bird was sent from the future to sabotage the experiment. Bech Nielsen of the Niels Bohr Institute in Copenhagen and Masao Ninomiya of the Yukawa Institute for Theoretical Physics in Kyoto, Japan, have published several papers over the past year arguing that the CERN experiment may be the latest in a series of physics research projects whose purposes are so unacceptable to the universe that they are doomed to fail, subverted by the future

In a series of audacious papers, Nielsen and Ninomiya have suggested that setbacks to the LHC occur because of “reverse chronological causation,” which is to say, sabotage from the future. The papers suggest that the Higgs boson may be “abhorrent to nature” and the LHC’s creation of the Higgs sometime in the future sends ripples backward through time to scupper its own creation. Each time scientists are on the verge of capturing the Higgs, the theory holds, the future intercedes. The theory as to why the universe rejects the creation of Higgs bosons is based on complex mathematics, but, Nielsen tells TIME, “you could explain it [simply] by saying that God, in inverted commas, or nature, hates the Higgs and tries to avoid them.”

Many physicists say that Nielsen and Ninomiya’s theory, while intellectually interesting, cannot be accurate because the event that the LHC is trying to recreate already happens in nature. Particle collisions of an energy equivalent to those planned in the LHC occur when high-energy cosmic rays collide with the earth’s atmosphere. What’s more, some scientists believe that the Tevatron accelerator at Fermi National Accelerator Laboratory (or Fermilab) near Chicago has already created Higgs bosons without incident; the Fermilab scientists are now refining data from their collisions to prove the Higgs’ existence.

Nielsen counters that nature might allow a small number of Higgs to be produced by the Tevatron, but would prevent the production of the large number of particles the LHC is anticipated to produce. He also acknowledges that Higgs particles are probably produced in cosmic collisions, but says it’s impossible to know whether nature has stopped a great deal of these collisions from happening. “It’s possible that God avoids Higgs [particles] only when there are very many of them, but if there are a few, maybe He let’s them go,” he says.

Given the problems with the Standard Model, some physicists have come up with elaborate alternatives to explain the workings of the cosmos, including the existence of multiple, alternate dimensions, or hidden “supersymmetric partners” to all the universe’s particles. To them, failure to find the Higgs — or finding the Higgs among an ensemble of strange and new particles — would be welcome, since it would suggest that more ambitious theories are needed.

The essence of string theory is actually very simple. String theory links together certain key feature of particle physics with certain key features of dimensions to extend both concepts in a way that describes, and thus kinda explains, all forces including subatomic forces and gravity. Any detail beyond that is almost incomprehensible. Like so many other things in the physical sciences (even basic engineering) there is a gap between the typical human understanding of a phenomenon and the mathematical model that fits the phenomenon. The human understanding may lead to a set of predictions or descriptions that are just plain wrong, while the mathematical formulation leads to predictions or descriptions that are just plain right, and that actually tell us about things we cannot really otherwise guess at. In some cases, the math forces us (through the proximate mechanism of curiosity) to find a way to make an observation that we would never otherwise make. To make detectable a particle normally hidden from our human senses, for instance. String theory has yet to produce a description that outlines a gap in physical (observed) knowledge that can be filled with a doable experiment. If the large hadron collider manages certain amazing tricks, a couple of predictions of String Theory may be tested,


Read more:

http://www.cosmosmagazine.com/news/1043/dark-matter-and-god-particle-within-reach?page=1

http://www.time.com/time/health/article/0,8599,1977062,00.html#ixzz0nhRPiBov

http://www.time.com/time/health/article/0,8599,1937370,00.html?iid=sphere-inline-bottom#ixzz0nhSqmKSB

http://www.time.com/time/health/article/0,8599,1729139,00.html#ixzz0nhZuGkRD

http://scienceblogs.com/gregladen/2009/04/even_you_can_understand_string.php